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Abstract 

This study focuses on designing a carbon tax policy based on spatial clustering and machine learning to identify 

optimal jurisdictions based on environmental-economic performance. The research aims to identify spatial 

patterns of environmental-economic performance across 38 countries, cluster countries based on similarity 

profiles using data-driven clustering methods, model the relationship between carbon prices/taxes, economic 

indicators, and environmental indicators, and recommend optimal carbon tax ranges for each jurisdictional 

cluster. Adopting a quantitative approach, this study utilizes secondary data from 38 countries, encompassing 
variables such as carbon prices/taxes, GDP, carbon emissions, energy consumption, industrial contribution to 

GDP, Environmental Performance Index (EPI), and climate change scores. The analysis employs Ward's 

hierarchical clustering method and evaluates silhouette coefficients to assess clustering validity. The results 

classify countries into five distinct clusters with varying environmental-economic characteristics. Developed 

nations with high environmental performance (e.g., Sweden, Norway, Denmark) are recommended to 

implement high carbon taxes (USD 100–150 per ton CO₂), while developing countries with high emission 
intensity (e.g., Indonesia, Kazakhstan) are advised to adopt low initial rates (<USD 15 per ton CO₂). Transitional 

economies are suggested to implement intermediate rates (USD 20–60 per ton CO₂). This study underscores 

the necessity of carbon tax policy differentiation based on economic capacity and environmental performance, 

as well as the importance of international cooperation in technology transfer and energy transition financing. 

The theoretical contribution lies in integrating Pigouvian Tax frameworks, spatial approaches, and machine 

learning to develop a more adaptive environmental fiscal policy design.   

Keywords: carbon tax, spatial clustering, economic-environmental performance, machine learning, 
climate policy 

 

Abstrak      
Penelitian ini fokus pada perancangan kebijakan pajak karbon berbasis spatial clustering dan machine learning 

dengan tujuan mengidentifikasi yurisdiksi optimal berdasarkan kinerja ekonomi-lingkungan. Studi ini bertujuan 

untuk mengidentifikasi pola spasial kinerja ekonomi-lingkungan di 38 negara, mengelompokkan negara 

berdasarkan kesamaan profil menggunakan metode clustering berbasis data, memodelkan hubungan antara 

harga/pajak karbon, indikator ekonomi, dan indikator lingkungan, serta merekomendasikan rentang pajak 
karbon optimal bagi setiap kelompok yurisdiksi. Penelitian ini menggunakan pendekatan kuantitatif dengan 

menggunakan data sekunder dari 38 negara yang mencakup variabel harga/pajak karbon, PDB, emisi karbon, 

konsumsi energi, kontribusi industri terhadap PDB, Indeks Kinerja Lingkungan (EPI), dan skor perubahan iklim. 

Analisis dilakukan dengan metode hierarchical clustering Ward linkage serta evaluasi silhouette coefficient untuk 

mengukur validitas pengelompokan. Hasil analisis mengelompokkan negara ke dalam lima klaster dengan 

karakteristik ekonomi-lingkungan yang berbeda. Negara maju dengan kinerja lingkungan tinggi (misalnya 

Swedia, Norwegia, Denmark) direkomendasikan menerapkan pajak karbon tinggi 100–150 USD/ton CO₂, 
sementara negara berkembang dengan intensitas emisi tinggi (misalnya Indonesia, Kazakhstan) realistis 

memulai dengan tarif rendah <15 USD/ton CO₂. Negara transisi direkomendasikan berada pada rentang 

menengah 20–60 USD/ton CO₂. Penelitian ini menegaskan pentingnya diferensiasi kebijakan pajak karbon 

berdasarkan kapasitas ekonomi dan kinerja lingkungan, serta perlunya kerja sama internasional dalam transfer 

teknologi dan pendanaan transisi energi. Kontribusi teoritis studi ini adalah integrasi kerangka Pigouvian Tax, 

pendekatan spasial, dan machine learning untuk merumuskan desain kebijakan fiskal lingkungan yang lebih 

adaptif.   
Kata kunci: pajak karbon, spatial clustering, kinerja ekonomi-lingkungan, machine learning, kebijakan 

iklim 
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INTRODUCTION 

The global climate crisis compels countries to formulate effective fiscal policies to reduce 

carbon emissions, one of which is the implementation of carbon taxation (Adam et al., 2022; 

Ghazouani et al., 2020). However, the effectiveness of a carbon tax largely depends on policy design 

that accounts for the spatial heterogeneity of economic and environmental performance (Pan et al., 

2024). Conventional “one-size-fits-all” approaches often overlook structural variations across 

countries, thereby rendering policies suboptimal or even counterproductive (Kim et al., 2024; Tu & 

Wang, 2022). In this context, the integration of spatial clustering and machine learning offers a novel 

perspective for identifying jurisdictions with similar economic–environmental profiles, thereby 

enabling more precise and evidence-based carbon pricing.  

Although carbon tax policies have been implemented across numerous countries, several major 

challenges persist, particularly the stark cross-country disparities in carbon pricing levels, as 

evidenced by comprehensive carbon prices in 2019 ranging from as low as −128.35 USD per ton CO₂ 

to as high as +146.25 USD per ton CO₂ (Carhart et al., 2022), the methodological limitations in 

simultaneously clustering jurisdictions based on both economic and environmental performance, 

and the absence of an integrative framework that leverages spatial analytics and machine learning 

to formulate adaptive carbon pricing policies across different contexts.  

Previous studies have predominantly focused on examining the impact of carbon taxation 

either on emission reduction or on economic growth in isolation (Noubissi et al., 2023; Li et al., 

2025), with limited research integrating economic variables (e.g., GDP, industrial contribution, 

energy consumption) and environmental variables (e.g., carbon emissions, Environmental 

Performance Index, climate change risks) within a single spatial analysis model. Moreover, although 

machine learning has been widely applied to predict carbon prices or emissions (Yu et al., 2024; 

Nadirgil, 2023), its application to jurisdictional clustering in support of environmental fiscal policy 

design remains scarce.  

This study proposes a hybrid approach that integrates spatial clustering to identify groups of 

countries with similar economic–environmental profiles and machine learning algorithms to model 

inter-variable relationships and recommend optimal carbon pricing ranges for each group. Such an 

approach is expected to reduce policy bias arising from structural heterogeneity across countries. 

The study provides an opportunity to examine whether data-driven spatial clustering can serve as 

a foundation for formulating carbon tax policies that are more efficient, equitable, and impactful. 

Against the backdrop of the growing urgency of climate change mitigation, the development of 

policy intelligence grounded in data-driven governance has become an imperative. 

This study aims to develop an analytical framework that integrates spatial clustering and 

machine learning in the design of carbon tax policies tailored to jurisdictional characteristics. 

Specifically, it seeks to identify the spatial patterns of economic–environmental performance 

across 38 countries, cluster countries based on profile similarities using data-driven clustering 

methods, model the relationships between carbon prices, economic indicators, and environmental 

indicators, and recommend optimal carbon pricing ranges for each group of jurisdictions. The main 

contribution of this study lies in developing the theoretical insight that the effectiveness of carbon 

taxation can be enhanced through a policy differentiation approach grounded in spatial clustering 

and artificial intelligence. 
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LITERATURE REVIEW 

Carbon Tax and Environmental Fiscal Policy 

A carbon tax is an economic instrument designed to internalize the negative externalities of 

greenhouse gas emissions by assigning a price to each ton of CO₂ emitted (Timilsina, 2022; Nong et 

al., 2021). According to Pigouvian Tax theory (Pigou, 1920), the tax rate should equal the marginal 

social cost of emissions in order to promote efficient resource allocation and reduce pollution 

(Chan, 2020; Chen et al., 2024). Within a fiscal context, this policy serves not only as an 

environmental control mechanism but also as a source of government revenue that can be 

allocated to energy transition investments (Barrage, 2019; Y. T. Chan, 2020). 

 

Spatial Approach in Environmental Policy Analysis 

 Spatial analysis in environmental economics builds upon the theory of Spatial Autocorrelation 

(Tobler, 1970), which posits that phenomena in one region are closely related to those in 

surrounding regions (Afanasyev & Kudrov, 2020; Bathelt & Storper, 2023). This principle provides a 

critical foundation for understanding that carbon emissions, energy consumption, and 

environmental fiscal policies do not operate in isolation but instead form spatial patterns that 

mutually influence one another (Xu & Li, 2022; Liu & Yang, 2021). The application of Spatial 

Econometric Models (Anselin, 1988) enables researchers to capture these geographic 

interdependencies, both in the form of spillover effects and feedback effects across countries. In the 

context of carbon taxation, spatial approaches offer a more precise analytical framework to map 

emission distributions and identify cross-jurisdictional disparities (Wang et al., 2022; N. Chan & 

Sayre, 2023). For instance, a carbon pricing policy implemented in one European country may affect 

the industrial competitiveness of neighboring countries with different emission intensities (Zhong 

& Pei, 2022). Thus, spatial analysis is not only relevant for estimating the feasibility of differentiated 

tax policies but also essential for assessing the effectiveness of environmental fiscal instruments at 

regional and global scales. This approach creates opportunities for designing policies that are more 

adaptive, collaborative, and grounded in interconnected geo-economic realities. 

 

Machine Learning and Spatial Data Processing for Environmental-Economic Data 

Machine learning provides a predictive and classificatory analytical framework capable of 

effectively handling non-linear and multivariate data (Q. Wang et al., 2020; Janiesch et al., 2021; 

Uddin et al., 2022). The integration of spatial clustering with ML enables the grouping of countries 

or regions based on similarities in their economic–environmental profiles, which subsequently 

serves as the basis for more targeted policy recommendations (Jemeļjanova et al., 2024; J. Wang & 

Zhuang, 2022). 

Misiuk & Brown (2023) argue that spatially clustered data may induce bias in the training and 

validation of ML models. Their proposed covariance weighting approach improves model 

performance, particularly when dealing with highly clustered datasets. Jemeļjanova et al. (2024) 

further emphasize that no standardized systematic methodology currently exists for addressing 

spatial autocorrelation, implying that the selection of techniques must be tailored to the 

characteristics of the data. 
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Integration of Spatial Approaches, Macroeconomic Modeling, and Spatial-Temporal Modeling 

in Carbon Tax Design 

C. Kim et al. (2024) developed a Gaussian mixture model to design CO₂-to-fuel supply chains by 

incorporating geographical and social dimensions, demonstrating the potential for cost savings 

through optimal facility placement. Similarly, Rahmati et al. (2023) applied k-means and self-

organizing maps within a hub location model that integrates multiple carbon policies, finding that 

cap-and-trade outperforms other mechanisms in terms of economic efficiency for the 

transportation sector. 

Barrage (2019) linked carbon taxation to capital taxation within a Dynamic General Equilibrium 

framework, showing that tax distortions reduce the optimal rate by 8–24% compared to the lump-

sum tax assumption. Y. T. Chan, (2020), employing a two-country E-DSGE model, highlighted that 

economic conditions shape the responsiveness of optimal tax rates and that international 

cooperation does not necessarily lower emission stocks. X. Chen et al. (2020) underscored the 

importance of sector-specific tax differentiation and channel leadership in low-carbon supply 

chains. 

Gong et al. (2024) introduced a Dynamic Spatial–Temporal Graph Convolutional Recurrent 

Network (DSTGCRN), which outperformed conventional emission prediction models by up to 40% 

in terms of MAE. J. Wang & Zhuang, (2022) combined k-means clustering with BiLSTM and BiGRU for 

carbon price forecasting in China, demonstrating superior performance compared to benchmark 

models. 

 

Economic Growth Dynamics, Environmental Tax Instruments, and Economic-Environmental 

Performance Evaluation at Various Scales 

W. Li et al. (2019) applied symbolic regression and the Apriori algorithm to cluster countries 

based on emission–economic growth relationships, identifying two main clusters differentiated by 

income levels and carbon intensity. Mardani et al. (2020) integrated self-organizing maps and 

Artificial Neural Networks (ANN) to predict emissions from energy consumption and economic 

growth in G20 countries, achieving high predictive accuracy. 

Y. Li & Song (2021) compared the effectiveness of carbon and fuel taxes in China using a panel 

spatial econometric model, showing that both instruments have distinct advantages, though their 

effects depend on regional economic conditions. L. Li et al. (2021) evaluated the performance of 

energy communities under a carbon tax scheme using a Nash bargaining mechanism, finding that 

the distribution of emission responsibilities generates differentiated economic and environmental 

outcomes. 

Cao et al. (2025) combined Bayesian-optimized XGBoost with nighttime light (NTL) imagery to 

estimate emissions in Shaanxi, China, identifying high–high clustering patterns in economically 

advanced areas. G. Wang et al. (2021) employed NSGA-II to optimize low-carbon land use planning 

in Eindhoven, revealing vegetation as the most influential geographic factor in emission reduction. 

From the above review, it can be identified that prior studies have integrated machine learning, 

spatial analysis, and economic modeling across various environmental policy contexts. However, 

most of these studies have concentrated on a single domain, such as price or emission forecasting, 

supply chain design, or economic growth analysis, thereby lacking a comprehensive integration of 

economic and environmental variables for cross-country carbon tax design. This study addresses 
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that gap by combining spatial clustering and machine learning to identify optimal jurisdictions for 

carbon taxation policies based on economic–environmental performance. 

  

RESEARCH METHOD 

This study employs a quantitative approach with an exploratory–comparative design. The 

primary objective is to identify the spatial patterns of countries’ economic–environmental 

performance and to cluster them based on profile similarities using hierarchical clustering analysis. 

This methodology is chosen for its ability to uncover latent structures within multidimensional data 

encompassing both economic and environmental indicators (Gao, 2021; Korir, 2024; Kudal et al., 

2023). The use of Ward’s linkage in hierarchical clustering is justified by its superiority in minimizing 

intra-cluster variance, thereby producing more homogeneous groups compared to other linkage 

methods (Randriamihamison et al., 2020; Bu et al., 2020; Dogan & Birant, 2021). 

The research sample consists of 38 countries with diverse levels of development, economic 

structures, and environmental performance. Data were sourced from the World Bank, IEA, and 

World Economic Forum (WEF). The variables used include Carbon Price, GDP, Carbon Emissions, 

Energy Consumption, Industry (% of GDP), the Environmental Performance Index (EPI), and the 

Climate Change Index. The stages of the hierarchical clustering analysis consist of six steps, as 

illustrated in Figure 1. 

  
Figure 1 Stages in hierarchical clustering analysis 

Source: Data compiled by researchers, 2025 

 

 The Hierarchical Agglomerative Clustering (HAC) method is employed to group countries based 

on similarities in their economic–environmental profiles. Ward’s linkage is selected for its ability to 

minimize within-cluster variance, thereby producing more homogeneous groups. The Ward’s 

linkage formula is expressed as follows: 

𝑑(𝐴∪𝐵),𝐶 = √
|𝐶| + |𝐴|

𝑇
𝑑2𝐴𝐶 +

|𝐶| + |𝐵|

𝑇
𝑑2𝐵𝐶 −

|𝐶|

𝑇
𝑑2𝐴𝐵  

 Euclidean distance is employed to measure the proximity between objects. The formula for 

Euclidean distance is expressed as follows: 

𝑑(𝑥, 𝑦) = √∑

𝑛

𝑖=1

(𝑥𝑖 − 𝑦𝑖)
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 The criteria for cluster separation are determined based on the silhouette coefficient and 

dendrogram analysis, with the formula expressed as follows: 

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥⁡{𝑎(𝑖), 𝑏(𝑖)}
 

The subsequent analysis includes the use of box plots to compare the distribution of variables 

across clusters. Geo-mapping is employed to visualize the spatial distribution patterns of clusters 

across countries, while inter-variable relationships are examined through a correlation matrix to 

model the associations among carbon pricing, GDP, emissions, and the Environmental Performance 

Index (EPI). Data processing was conducted using Orange Data Mining software version 3.39.0.  

 

RESEARCH RESULTS 

Data from 38 countries reveal significant heterogeneity in economic–environmental 

performance, as illustrated in Figure 2. High-income countries with strong environmental 

governance (e.g., Switzerland, Norway, Sweden, Denmark, and the Netherlands) tend to impose 

relatively high carbon prices (>90 USD per ton of CO₂) and consistently achieve Environmental 

Performance Index (EPI) scores at or near 100. This group also generally exhibits lower carbon 

emission intensity relative to economic output, indicating the effectiveness of market-based 

environmental policy instruments. 

  
Figure 2 Hierarchical Clustering by R     egion 

Source: Orange Data Mining 3.39.0 

 

In contrast, developing countries such as Indonesia, Kazakhstan, Ukraine, and Poland set 

extremely low carbon prices (<1 USD per ton of CO₂), despite the industrial sector contributing a 

substantial share to GDP (≥30%). This indicates limited fiscal and institutional capacity to 

internalize the negative externalities of carbon emissions. These countries also record low 

Environmental Performance Index (EPI) scores (≤65), reflecting weak overall environmental 
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performance. The hierarchical clustering method categorizes the countries into five main clusters, 

as presented in Table 1. 

      

      

Table 1 Cluster Division and Cluster Profiles 

Cluster Categories Country Profile 

C1 Industrialized 

Countries with 

Low-Medium 

Carbon Prices 

Albania, Austria, China, Estonia, 

Finland, France, Germany, Japan, 

Latvia, Montenegro, Poland, 

Portugal, Slovenia, Spain, 

Ukraine, United Kingdom 

Medium-high GDP, strong 

industry, relatively high 

emissions, carbon price <50 

USD/ton 

C2 Emerging 

Economies with 

Moderate Carbon 

Policies 

Argentina, Chile, Colombia, 

European Union, Israel, Mexico, 

New Zealand, South Africa 

Carbon price 3–70 USD/ton, 

EPI moderate to high, but 

fiscal capacity still limited 

C3 Middle-income 

countries with 

very low carbon 

prices 

Indonesia, Kazakhstan Carbon price <1 USD/ton, 

high emission intensity, low 

EPI, dominant industrial 

sector 

C4 Developed 

Countries with 

High Carbon 

Prices and 

Excellent EPI 

Denmark, Ireland, Netherlands, 

Norway, Sweden, Switzerland, 

Uruguay 

Carbon price >90 USD/ton, 

EPI close to 100, per capita 

emissions relatively 

controlled 

C5 Developed 

Countries with 

High Economies 

but Moderate 

Carbon Prices 

Australia, Canada, Iceland, 

Luxembourg, Singapore 

Very high GDP, massive 

energy consumption, carbon 

price of 18–66 USD/ton, but 

still maintaining 

environmental performance 

through non-fiscal 

regulations 

Source: Data compiled by researchers, 2025 

 

The model of relationships between carbon pricing, economic indicators, and environmental 

indicators presented in Table 2 suggests several key findings. First, carbon pricing is positively 

correlated with GDP per capita and the Environmental Performance Index (EPI). Wealthier countries 

with greater fiscal capacity are more capable of setting higher carbon prices without imposing 

substantial socio-economic burdens. Second, carbon pricing is negatively correlated with emission 

intensity and per capita energy consumption. Countries with higher carbon prices generally 

succeed in reducing emissions relative to economic output through renewable energy innovation, 

industrial efficiency, and green tax incentives. Finally, the share of industry in GDP demonstrates 

ambivalent effects. In countries with strong environmental governance (Cluster 4), even when the 

industrial sector is large (>20% of GDP), emission levels remain low due to energy efficiency 



      

Journal of Tax Policy, Economics, and Accounting – Vol. 3 No. 2 (2025) | 80  
 

measures and the transition toward low-carbon technologies. Conversely, in countries with weaker 

governance (Cluster 3), a large industrial sector contributes to high emission intensity as production 

remains heavily reliant on fossil fuel-based technologies. 

 

Table 2 Pearson Correlation of Research Variables 

 Carbon 

Price 

GDP Carbon 

emission 

Energy 

cons 

Industry 

% PDB 

EPI Climate 

Change 

Carbon Price 1.000       

GDP 0.540 1.000      

Carbon 

emission 

-0.102 0.371 1.000     

Energy cons 0.195 0.500 0.516 1.000    

Industry % 

PDB 

-0.160 -0.167 0.116 -0.102 1.000   

EPI 0.331 0.404 0.208 0.279 -0.225 1.000  

Climate 

Change 

0.296 0.398 0.082 0.361 -0.394 0.071 1.000 

Source: Data compiled by researchers, 2025 

 

The clustering results and relational model indicate that carbon tax design cannot be uniform 

across countries. Advanced economies in Europe (C4) may serve as benchmarks for progressive 

carbon pricing policies, whereas developing countries (C1 and C3) require a gradual approach that 

integrates energy transition subsidies, green investment incentives, and institutional 

strengthening. Accordingly, an effective carbon tax policy must be grounded in each country’s 

specific economic–environmental profile rather than solely in global targets. 

The quality of cluster separation, as illustrated by the silhouette plot in Figure 3, shows an 

overall average value of approximately 0.20, which can be categorized as moderate. This indicates 

that the separation between clusters is reasonably good, although not fully optimal. Cluster C1, with 

a value of 0.128, demonstrates a positive yet relatively small result, suggesting a degree of 

homogeneity but also some overlap with other clusters, particularly C2. In contrast, C2, with an 

average value of 0.540, exhibits very strong separation and high internal consistency, reflecting a 

uniform economic–environmental profile among the countries in this group. Similarly, Cluster C3, 

with a score of 0.524, also indicates strong clustering performance despite consisting of only two 

countries, namely Indonesia and Kazakhstan. This finding underscores that these two countries 

share highly similar economic–environmental characteristics that are significantly distinct from 

other clusters. Meanwhile, Cluster C4 records a value of 0.207, which falls within a moderate range, 

signaling heterogeneity among advanced economies with high carbon prices. While similarities 

exist within this cluster, variations in energy transition policies among its members contribute to its 

moderate separation. Finally, Cluster C5, with a score of 0.145, reveals relatively weak clustering 

strength. This suggests that although the countries in this group share common features as 

advanced economies with moderate carbon prices, their proximity to Cluster C4 results in less 

clearly defined boundaries. 
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Figure 3 Silhouette Plot 

Source: Orange Data Mining 3.39.0 

 

The internal consistency of each cluster exhibits considerable variation. Cluster C1 shows low 

consistency due to its high degree of heterogeneity, as this group combines advanced European 

economies such as Germany and the United Kingdom with transition countries like Poland, Ukraine, 

and Albania. This condition explains why the silhouette score of this cluster is relatively low. In 

contrast, Cluster C2 demonstrates high consistency, where Latin American countries together with 

Israel, the European Union, and New Zealand share carbon policy patterns characterized by 

moderate pricing levels and relatively balanced fiscal capacities. Cluster C3 exhibits exceptionally 

high consistency, as it consists of only two countries—Indonesia and Kazakhstan—that are strongly 

aligned in their economic–environmental indicators, marked by low carbon prices, high emission 

intensity, and low EPI scores. Meanwhile, Cluster C4 reflects moderate consistency, with Northern 

European countries that consistently implement high carbon taxes and demonstrate superior 

environmental performance, although differences in energy policy implementation prevent their 

consistency score from reaching the levels observed in C2 or C3. Finally, Cluster C5 displays weak 

consistency, as it comprises non-European advanced economies such as Canada, Australia, and 

Singapore. Although these countries share high economic orientation with moderate carbon 

regulation, differences in energy structures—such as Australia’s reliance on coal and Singapore’s 

dependence on imported energy—reduce the level of homogeneity within this cluster. 
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The implications of this clustering for carbon tax design highlight the necessity of tailoring 

strategies to the specific characteristics of each country group. Cluster C1, which exhibits moderate 

heterogeneity, requires differentiated policy approaches given the diverse fiscal and institutional 

capacities within the group; Eastern European countries, for example, may require longer transition 

phases compared to their Western European counterparts. In contrast, Cluster C2, characterized by 

high internal consistency, represents an ideal candidate for regional policy harmonization, as the 

similarity of economic–environmental profiles facilitates more uniform carbon pricing and supports 

the adoption of a collective carbon tax framework. Cluster C3, despite its small size, displays very 

high consistency yet reflects countries lagging behind in climate policy. These countries necessitate 

international support in the form of energy transition financing and green technologies before they 

can significantly increase their carbon prices. Meanwhile, Cluster C4 demonstrates a combination 

of heterogeneity and strong policy orientation, enabling its member states to serve as global role 

models. With robust fiscal capacities and strong environmental commitments, this cluster has the 

potential to set global benchmarks for carbon pricing. Finally, Cluster C5, which exhibits weak 

consistency, demands country-specific approaches due to the diverse energy contexts of its 

members. Policy harmonization within this group is more difficult to achieve, making bilateral or 

small-scale multilateral cooperation a more pragmatic strategy. 

The box plot analysis reveals variations in the distribution of carbon prices, GDP, carbon 

emissions, energy consumption, industrial structure, as well as environmental and climate 

performance across clusters. For the carbon price variable, Cluster C4 exhibits a high median above 

USD 100 with a narrow spread, indicating consistent policy implementation among advanced 

European economies. In contrast, Cluster C5 shows a medium median ranging between USD 20 and 

60 with wide variation, reflecting divergent strategies, such as those between Singapore and 

Australia. Clusters C1 and C2 present low medians below USD 30 but with significant outliers, 

suggesting heterogeneity in carbon fiscal policies. Meanwhile, Cluster C3 consistently remains at a 

very low level, below USD 1, with a uniform distribution across countries. 

 
Figure 4 Box Plot per Carbon Price Variable 

Source: Orange Data Mining 3.39.0 
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The distribution of GDP further underscores differences in fiscal capacity. Clusters C4 and C5 

consist of high-income countries with considerable variation, where Luxembourg and Switzerland 

emerge as outliers. Clusters C1 and C2 fall within the middle range, driven primarily by contributions 

from Eastern European and Latin American countries, while Cluster C3 occupies the lower-middle 

category consistent with its fiscal capacity. In terms of carbon emissions, Cluster C5 exhibits high 

per capita emissions due to intensive energy consumption, whereas Cluster C4 shows relatively low 

emissions despite high GDP, indicating the effectiveness of carbon policy. Clusters C1, C2, and C3 

demonstrate substantial variation, reflecting differences in energy and industrial structures. 

 
  

Figure 5 Box Plot per variable GDP and Carbon emission 

Source: Orange Data Mining 3.39.0 

 

Energy consumption is highest in Cluster C5, with a median exceeding 5,000 TOE per capita, 

reflecting high energy intensity. Cluster C4 is at a moderate level consistent with energy efficiency, 

whereas Cluster C3 records low consumption but remains fossil-fuel based, resulting in persistently 

high emission intensity. In terms of industrial structure, Cluster C3 dominates with contributions 

exceeding 35 percent of GDP, while Clusters C4 and C5 occupy intermediate levels supported by 

efficient technologies. Clusters C1 and C2, meanwhile, display greater variability due to their 

ongoing transition toward service-oriented and green sectors. 
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Figure 6 Box Plot per variable Energy consumption and Industry % GDP 

Source: Orange Data Mining 3.39.0 

 

For the EPI variable, Clusters C4 and C5 dominate with scores above 90, while Cluster C1 records 

relatively high but heterogeneous values. Cluster C2 falls within a moderate range of 60–80, and 

Cluster C3 ranks the lowest with scores below 60. Regarding the climate change index, Cluster C4 

demonstrates relatively strong performance with scores above 80, whereas Cluster C5 exhibits 

greater variability. Clusters C1 and C2 are positioned at moderate levels, while Cluster C3 records 

the lowest performance due to high vulnerability and weak adaptive capacity. 
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Figure 7 Box Plot per EPI and Climate Change Variable 

Source: Orange Data Mining 3.39.0 

 

Based on these distributional results, the recommended range of optimal carbon prices is 

formulated by considering the balance between economic capacity and environmental 

performance. Cluster C1, consisting of mid-industrial economies with high heterogeneity, is advised 

to adopt a transitional rate of USD 30–60 per ton of CO₂, complemented by green technology 

support. Cluster C2, comprising transition economies such as Latin America, Israel, and parts of the 

European Union, is recommended to fall within the range of USD 20–50 per ton of CO₂, with gradual 

increases in line with strengthening fiscal capacity. Cluster C3, which includes lower-middle-income 

countries with high emissions and institutional weaknesses, such as Indonesia and Kazakhstan, is 

suggested to start below USD 15 per ton of CO₂, supported by international assistance to avoid 

excessive economic burdens. Cluster C4, consisting of advanced economies with high EPI scores 

and already high carbon prices, is recommended to be within the range of USD 100–150 per ton of 

CO₂, consistent with net-zero targets and the Paris Agreement. Finally, Cluster C5, comprising 

advanced economies with high energy consumption, is recommended to adopt a range of USD 50–

90 per ton of CO₂, with a focus on energy decarbonization and improving industrial efficiency. 
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Figure 8 Geo Map Visualization 

Source: Orange Data Mining 3.39.0 

 

The geo-mapped cluster-based analysis of carbon taxes presented in Figure 8 reveals a clear 

spatial pattern in the distribution of economic–environmental performance across countries. 

Cluster 1, illustrated in blue, is widely distributed across Eastern Europe, parts of Western Europe, 

and East Asia. Countries within this cluster generally have medium to high GDP levels but continue 

to face relatively high emission intensity. Cluster 2, depicted in red, is concentrated in Latin 

America—including Argentina, Chile, Mexico, and Colombia—as well as Israel and South Africa. This 

pattern underscores the characteristics of transition economies with limited fiscal capacity, 

although they have begun to adopt carbon taxes at moderate rates. Meanwhile, Cluster 3, shown in 

green, consists solely of Indonesia and Kazakhstan, two countries with similar profiles characterized 

by heavy dependence on the industrial sector, very low carbon prices, and weak environmental 

performance. Cluster 4, represented in orange, is concentrated in Western and Northern Europe, 

including Sweden, Norway, Denmark, the Netherlands, and Switzerland. This concentration 

highlights the dominance of Europe as the core region of countries with high carbon prices, strong 

environmental governance, and robust economic capacity. Finally, Cluster 5, depicted in yellow, 

encompasses non-European advanced economies such as Canada, Australia, Singapore, Iceland, 

and Luxembourg. Countries in this cluster exhibit high income and massive energy consumption 

but have yet to establish carbon prices as high as their European counterparts. 

From a regional and geo-economic perspective, a clear fragmentation can be observed in 

Europe. Countries such as Germany, France, and Austria fall into Cluster 1, whereas Sweden, 

Norway, and the Netherlands are classified under Cluster 4. This highlights differences in the depth 

of carbon fiscal policies despite their shared membership in the European Union. Latin America is 

predominantly represented by Cluster 2, consistent with its middle-income economic capacity and 

reliance on fossil energy. Asia displays wide disparities, with Japan and China belonging to Cluster 

1, Israel and parts of the Asia-Pacific included in Cluster 2, and Indonesia placed in Cluster 3. Oceania 
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and North America exhibit the pattern of advanced energy-intensive economies, as reflected in 

Australia and Canada, which are grouped in Cluster 5. Africa is represented by South Africa, which 

falls into Cluster 2, underscoring its status as a transition economy facing significant 

decarbonization challenges. 

In terms of policy implications, countries in Cluster 4 can serve as global role models, 

maintaining high carbon price ranges of approximately USD 100–150 per ton of CO₂. Cluster 5 

countries, such as Canada, Australia, and Singapore, should raise their carbon prices to the range of 

USD 50–90 per ton of CO₂ to close the gap with Europe, particularly in the energy sector. Cluster 2, 

comprising Latin America and South Africa, requires a gradual approach with carbon prices ranging 

between USD 20–50 per ton of CO₂, alongside efforts to strengthen fiscal and institutional 

capacities. Cluster 1, covering Central–Eastern Europe and East Asia, may adopt transitional carbon 

pricing of USD 30–60 per ton of CO₂, supported by green technology to safeguard industrial 

competitiveness. Meanwhile, Cluster 3, consisting of Indonesia and Kazakhstan, requires low initial 

carbon tax schemes below USD 15 per ton of CO₂, combined with international support in the form 

of energy transition financing and emissions trading mechanisms. 

  

 

DISCUSSION 

Carbon tax as a fiscal instrument is rooted in Pigouvian Tax theory (Pigou, 1920), which 

emphasizes the importance of internalizing the negative externalities of greenhouse gas emissions 

through a carbon price that reflects the marginal social cost. In this context, the findings reveal 

pronounced spatial differentiation across countries in determining carbon prices. For instance, 

countries in Cluster 4 (Sweden, Norway, Denmark, the Netherlands, Switzerland) have adopted high 

carbon prices (100–150 USD/ton CO₂), consistent with their strong economic capacity and high 

environmental performance. This affirms that the implementation of carbon taxation cannot be 

standardized globally but must instead be tailored to the economic structure, fiscal capacity, and 

environmental performance of each jurisdiction. 

From a spatial autocorrelation perspective (Tobler, 1970; Anselin, 1988), the results 

demonstrate consistent spatial patterns: Europe dominates the cluster of countries with high 

carbon taxes, while Latin America and Africa are concentrated in clusters with moderate rates, and 

Asia (e.g., Indonesia, Kazakhstan) emerges as an outlier with extremely low carbon prices. This 

supports the thesis that carbon tax policy is not merely fiscal-economic in nature but also geo-

economic, with spatial distributions that carry significant implications for the equity of the global 

energy transition. 

The integration of machine learning and spatial clustering in this study advances the literature 

(J. Wang & Zhuang, 2022; Jemeļjanova et al., 2024) by introducing a non-linear analytical framework 

capable of identifying multivariate economic–environmental patterns. Accordingly, this research 

contributes theoretically by proposing a hybrid approach that bridges Pigouvian Tax theory, spatial 

econometrics, and data-driven ML, thereby enabling a more adaptive design of carbon tax policies. 

Previous studies have exhibited notable limitations. Misiuk & Brown, (2023) highlight the 

challenge of spatial autocorrelation, which is often overlooked in ML-based modeling, whereas 

Barrage, (2019) and Y. T. Chan, (2020) focus primarily on macroeconomic frameworks without 

adequately accounting for spatial heterogeneity. This study addresses these gaps by integrating 

spatial clustering across 38 countries, thereby capturing the complexity of interactions among 
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carbon pricing, GDP, carbon emissions, energy consumption, industrial structure, EPI, and climate 

change indices. 

In addition, prior studies such as Rahmati et al. (2023) and C. Kim et al. (2024) have primarily 

emphasized carbon supply chain optimization, whereas this research extends the scope by 

determining the optimal carbon price range across country clusters. The practical contribution of 

this study lies in providing differentiated policy recommendations tailored to the economic–

environmental profiles of each cluster. Middle-income industrial countries in Cluster 1 are advised 

to implement a phased carbon tax of USD 30–60 per ton of CO₂, supported by green technology 

adoption. Cluster 2, comprising transition economies such as Latin America and South Africa, is 

more suited to a moderate range of USD 20–50 per ton of CO₂ while simultaneously strengthening 

institutional capacity. Cluster 3, which includes Indonesia and Kazakhstan, requires a relatively low 

rate below USD 15 per ton of CO₂, contingent upon international support. Advanced European 

economies in Cluster 4 are recommended to adopt a higher rate of USD 100–150 per ton of CO₂, 

whereas Cluster 5 is projected to align with a range of USD 50–90 per ton of CO₂, with a strong 

emphasis on energy decarbonization. 

 

Table 3 Research Results Clusters, Economic-environmental Characteristics, Carbon Price 

Range Recommendations, and Policy Implications 

Cluster Economic-

environmental 

Characteristics 

Optimal Carbon 

Tax Range 

(USD/ton CO₂) 

Policy Implications 

C1 High-middle GDP, 

moderate emissions, 

large industrial structure, 

relatively high EPI 

30 – 60 A gradual transition is needed; 

focus on energy efficiency, green 

technology, and regional policy 

harmonization 

C2 Transitional countries, 

limited fiscal capacity, 

moderate energy 

consumption, varying EPI 

20 – 50 Apply moderate tariffs; 

institutional strengthening and 

international funding support are 

needed 

C3 Low-medium GDP, high 

carbon intensity, fossil 

fuel-based energy 

consumption, low EPI 

< 15 Low tax rates; need for energy 

transition subsidies, international 

assistance, and emissions trading 

mechanisms 

C4 Developed country, high 

GDP, excellent EPI, low 

emissions, efficient 

energy consumption 

100 – 150 Become a global role model; 

promote climate leadership, 

harmonization of high tariffs in the 

European region 

C5 High GDP, massive 

energy consumption, 

good EPI, but high energy 

intensity 

50 – 90 Gradually increase carbon tariffs; 

prioritize energy decarbonization, 

technological innovation, and 

industrial compensation 

Source: Data compiled by researchers, 2025 
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Table 3 demonstrates that countries in cluster C1, encompassing major industries in Europe and 

East Asia, are currently in a transitional phase; therefore, a moderate carbon tax rate is considered 

sufficient to maintain competitiveness while simultaneously promoting energy efficiency. Cluster 

C2, which consists of transitional economies in Latin America and Africa, requires more extensive 

fiscal adaptation, implying that moderate tax rates must be accompanied by institutional 

strengthening and international financial support. Meanwhile, Indonesia and Kazakhstan, 

categorized within cluster C3, emerge as critical outliers that necessitate a low carbon tax scheme 

with international assistance in order to avoid impeding economic growth. Northern and Western 

European countries in cluster C4 have successfully implemented high carbon taxes and are well-

positioned to serve as global pioneers in advocating for the establishment of an international 

minimum tax rate. Finally, cluster C5, comprising advanced non-European economies, requires a 

gradual tax increase toward European levels in order to sustain the credibility of their global climate 

leadership. 

Furthermore, the spatial heterogeneity of carbon pricing identified in this study resonates with 

the principle of Common but Differentiated Responsibilities and Respective Capabilities (CBDR-RC) 

under the UNFCCC framework. Advanced economies in Cluster 4 exhibit greater fiscal capacity, 

technological readiness, and historical emissions responsibility, thereby justifying their higher 

recommended carbon tax levels. Conversely, countries in Cluster 3, such as Indonesia and 

Kazakhstan, possess limited institutional and financial capability, indicating the need for lower 

carbon tax regimes supported by international assistance mechanisms. The clustering evidence 

thus reinforces that carbon taxation must incorporate differentiated economic burdens to ensure 

fairness, prevent development setbacks, and promote equitable transitions. Integrating CBDR-RC 

perspectives strengthens the global legitimacy of carbon pricing policies and aligns national actions 

with principles of distributive climate justice. 

The findings of this study carry dual implications. From a practical perspective, the clustering 

results provide governments with a basis for formulating context-specific carbon tax policies that 

align with fiscal–economic capacity and environmental performance. For instance, countries in the 

low cluster (C3) require lower tax rates accompanied by international support, whereas those in the 

high cluster (C4) are expected to reinforce global leadership through more aggressive rates. From a 

theoretical standpoint, this study enriches the literature by introducing a framework for spatially 

informed carbon tax policy design, which has not been explicitly integrated into prior research. 

 

 

CONCLUSION 

The findings of this study underscore that carbon tax policies cannot be designed through a 

uniform approach but must instead account for the spatial heterogeneity of economic–

environmental performance across jurisdictions. By employing hierarchical clustering with a Ward 

linkage method, 38 countries were classified into five distinct groups with clear characteristics. 

Western European and Scandinavian countries (Cluster 4), characterized by high economic 

capacity, strong environmental performance, and the adoption of aggressive carbon pricing, are 

recommended to implement a tax of USD 100–150 per ton of CO₂ in order to sustain their global 

leadership in climate mitigation. In contrast, transitional economies in Latin America and Africa 

(Cluster 2) are better suited to a moderate tax range of USD 20–50 per ton of CO₂, accompanied by 

institutional strengthening and international financial support. Middle and lower income countries 
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such as Indonesia and Kazakhstan (Cluster 3) are realistically positioned to begin with a low tax of 

less than USD 15 per ton of CO₂ to avoid constraining growth, while still being directed toward a 

sustainable energy transition. The practical implication of these findings is the necessity of adopting 

differentiated policies based on fiscal capacity and environmental performance, complemented by 

global redistribution mechanisms, technology transfer, and international cooperation frameworks 

to ensure a just climate transition. 

From a theoretical perspective, this study enriches the literature by integrating three 

foundational pillars: Pigouvian Tax theory as the fiscal basis, spatial autocorrelation as the spatial 

framework, and machine learning as a data-driven analytical tool. The primary contribution lies in 

the development of a spatially informed carbon tax policy design framework, which has been 

scarcely explored in prior research. By linking spatial analysis, economic-environmental indicators, 

and the determination of optimal carbon tax ranges, this study offers a novel conceptual model for 

designing adaptive and context-specific climate policies. Future research directions may focus on 

expanding the temporal dimension (spatio-temporal modeling) to capture the dynamics of 

emission changes and carbon prices over time, as well as integrating with dynamic macroeconomic 

models to evaluate fiscal distributional impacts and intergenerational equity. Furthermore, 

sectoral-level exploration (energy, industry, and transportation) is equally crucial to ensure greater 

precision and effectiveness of carbon tax policies. Thus, this study not only provides practical 

contributions to policy formulation but also opens avenues for more integrative theoretical 

advancements in the fields of environmental economics, taxation, and data science.  
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