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Abstract

This study focuses on designing a carbon tax policy based on spatial clustering and machine learning to identify
optimal jurisdictions based on environmental-economic performance. The research aims to identify spatial
patterns of environmental-economic performance across 38 countries, cluster countries based on similarity
profiles using data-driven clustering methods, model the relationship between carbon prices/taxes, economic
indicators, and environmental indicators, and recommend optimal carbon tax ranges for each jurisdictional
cluster. Adopting a quantitative approach, this study utilizes secondary data from 38 countries, encompassing
variables such as carbon prices/taxes, GDP, carbon emissions, energy consumption, industrial contribution to
GDP, Environmental Performance Index (EPI), and climate change scores. The analysis employs Ward's
hierarchical clustering method and evaluates silhouette coefficients to assess clustering validity. The results
classify countries into five distinct clusters with varying environmental-economic characteristics. Developed
nations with high environmental performance (e.g., Sweden, Norway, Denmark) are recommended to
implement high carbon taxes (USD 100-150 per ton CO,), while developing countries with high emission
intensity (e.g., Indonesia, Kazakhstan) are advised to adopt low initial rates (<USD 15 per ton CO,). Transitional
economies are suggested to implement intermediate rates (USD 20-60 per ton CO,). This study underscores
the necessity of carbon tax policy differentiation based on economic capacity and environmental performance,
as well as the importance of international cooperation in technology transfer and energy transition financing.
The theoretical contribution lies in integrating Pigouvian Tax frameworks, spatial approaches, and machine
learning to develop a more adaptive environmental fiscal policy design.

Keywords: carbon tax, spatial clustering, economic-environmental performance, machine learning,
climate policy

Abstrak

Penelitian ini fokus pada perancangan kebijakan pajak karbon berbasis spatial clustering dan machine learning
dengan tujuan mengidentifikasi yurisdiksi optimal berdasarkan kinerja ekonomi-lingkungan. Studi ini bertujuan
untuk mengidentifikasi pola spasial kinerja ekonomi-lingkungan di 38 negara, mengelompokkan negara
berdasarkan kesamaan profil menggunakan metode clustering berbasis data, memodelkan hubungan antara
harga/pajak karbon, indikator ekonomi, dan indikator lingkungan, serta merekomendasikan rentang pajak
karbon optimal bagi setiap kelompok yurisdiksi. Penelitian ini menggunakan pendekatan kuantitatif dengan
menggunakan data sekunder dari 38 negara yang mencakup variabel harga/pajak karbon, PDB, emisi karbon,
konsumsi energi, kontribusi industri terhadap PDB, Indeks Kinerja Lingkungan (EPI), dan skor perubahan iklim.
Analisis dilakukan dengan metode hierarchical clustering Ward linkage serta evaluasi silhouette coefficient untuk
mengukur validitas pengelompokan. Hasil analisis mengelompokkan negara ke dalam lima klaster dengan
karakteristik ekonomi-lingkungan yang berbeda. Negara maju dengan kinerja lingkungan tinggi (misalnya
Swedia, Norwegia, Denmark) direkomendasikan menerapkan pajak karbon tinggi 100-150 USD/ton CO,,
sementara negara berkembang dengan intensitas emisi tinggi (misalnya Indonesia, Kazakhstan) realistis
memulai dengan tarif rendah <15 USD/ton CO,. Negara transisi direkomendasikan berada pada rentang
menengah 20-60 USD/ton CO,. Penelitian ini menegaskan pentingnya diferensiasi kebijakan pajak karbon
berdasarkan kapasitas ekonomi dan kinerja lingkungan, serta perlunya kerja sama internasional dalam transfer
teknologi dan pendanaan transisi energi. Kontribusi teoritis studi ini adalah integrasi kerangka Pigouvian Tax,
pendekatan spasial, dan machine learning untuk merumuskan desain kebijakan fiskal lingkungan yang lebih
adaptif.

Kata kunci: pajak karbon, spatial clustering, kinerja ekonomi-lingkungan, machine learning, kebijakan
iklim
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INTRODUCTION

The global climate crisis compels countries to formulate effective fiscal policies to reduce
carbon emissions, one of which is the implementation of carbon taxation (Adam et al., 2022;
Ghazouani et al., 2020). However, the effectiveness of a carbon tax largely depends on policy design
that accounts for the spatial heterogeneity of economic and environmental performance (Pan et al.,
2024). Conventional “one-size-fits-all” approaches often overlook structural variations across
countries, thereby rendering policies suboptimal or even counterproductive (Kim et al., 2024; Tu &
Wang, 2022). In this context, the integration of spatial clustering and machine learning offers a novel
perspective for identifying jurisdictions with similar economic-environmental profiles, thereby
enabling more precise and evidence-based carbon pricing.

Although carbon tax policies have been implemented across numerous countries, several major
challenges persist, particularly the stark cross-country disparities in carbon pricing levels, as
evidenced by comprehensive carbon prices in 2019 ranging from as low as —128.35 USD per ton CO,
to as high as +146.25 USD per ton CO, (Carhart et al., 2022), the methodological limitations in
simultaneously clustering jurisdictions based on both economic and environmental performance,
and the absence of an integrative framework that leverages spatial analytics and machine learning
to formulate adaptive carbon pricing policies across different contexts.

Previous studies have predominantly focused on examining the impact of carbon taxation
either on emission reduction or on economic growth in isolation (Noubissi et al., 2023; Li et al.,
2025), with limited research integrating economic variables (e.g., GDP, industrial contribution,
energy consumption) and environmental variables (e.g., carbon emissions, Environmental
Performance Index, climate change risks) within a single spatial analysis model. Moreover, although
machine learning has been widely applied to predict carbon prices or emissions (Yu et al., 2024;
Nadirgil, 2023), its application to jurisdictional clustering in support of environmental fiscal policy
design remains scarce.

This study proposes a hybrid approach that integrates spatial clustering to identify groups of
countries with similar economic-environmental profiles and machine learning algorithms to model
inter-variable relationships and recommend optimal carbon pricing ranges for each group. Such an
approach is expected to reduce policy bias arising from structural heterogeneity across countries.
The study provides an opportunity to examine whether data-driven spatial clustering can serve as
a foundation for formulating carbon tax policies that are more efficient, equitable, and impactful.
Against the backdrop of the growing urgency of climate change mitigation, the development of
policy intelligence grounded in data-driven governance has become an imperative.

This study aims to develop an analytical framework that integrates spatial clustering and
machine learning in the design of carbon tax policies tailored to jurisdictional characteristics.
Specifically, it seeks to identify the spatial patterns of economic-environmental performance
across 38 countries, cluster countries based on profile similarities using data-driven clustering
methods, model the relationships between carbon prices, economicindicators, and environmental
indicators, and recommend optimal carbon pricing ranges for each group of jurisdictions. The main
contribution of this study lies in developing the theoretical insight that the effectiveness of carbon
taxation can be enhanced through a policy differentiation approach grounded in spatial clustering
and artificial intelligence.
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LITERATURE REVIEW
Carbon Tax and Environmental Fiscal Policy

A carbon tax is an economic instrument designed to internalize the negative externalities of
greenhouse gas emissions by assigning a price to each ton of CO, emitted (Timilsina, 2022; Nong et
al., 2021). According to Pigouvian Tax theory (Pigou, 1920), the tax rate should equal the marginal
social cost of emissions in order to promote efficient resource allocation and reduce pollution
(Chan, 2020; Chen et al., 2024). Within a fiscal context, this policy serves not only as an
environmental control mechanism but also as a source of government revenue that can be
allocated to energy transition investments (Barrage, 2019; Y. T. Chan, 2020).

Spatial Approach in Environmental Policy Analysis

Spatial analysis in environmental economics builds upon the theory of Spatial Autocorrelation
(Tobler, 1970), which posits that phenomena in one region are closely related to those in
surrounding regions (Afanasyev & Kudrov, 2020; Bathelt & Storper, 2023). This principle provides a
critical foundation for understanding that carbon emissions, energy consumption, and
environmental fiscal policies do not operate in isolation but instead form spatial patterns that
mutually influence one another (Xu & Li, 2022; Liu & Yang, 2021). The application of Spatial
Econometric Models (Anselin, 1988) enables researchers to capture these geographic
interdependencies, both in the form of spillover effects and feedback effects across countries. In the
context of carbon taxation, spatial approaches offer a more precise analytical framework to map
emission distributions and identify cross-jurisdictional disparities (Wang et al., 2022; N. Chan &
Sayre, 2023). For instance, a carbon pricing policy implemented in one European country may affect
the industrial competitiveness of neighboring countries with different emission intensities (Zhong
& Pei, 2022). Thus, spatial analysis is not only relevant for estimating the feasibility of differentiated
tax policies but also essential for assessing the effectiveness of environmental fiscal instruments at
regional and global scales. This approach creates opportunities for designing policies that are more
adaptive, collaborative, and grounded in interconnected geo-economic realities.

Machine Learning and Spatial Data Processing for Environmental-Economic Data

Machine learning provides a predictive and classificatory analytical framework capable of
effectively handling non-linear and multivariate data (Q. Wang et al., 2020; Janiesch et al., 2021,
Uddin et al.,, 2022). The integration of spatial clustering with ML enables the grouping of countries
or regions based on similarities in their economic-environmental profiles, which subsequently
serves as the basis for more targeted policy recommendations (Jemeljanova et al., 2024; J. Wang &
Zhuang, 2022).

Misiuk & Brown (2023) argue that spatially clustered data may induce bias in the training and
validation of ML models. Their proposed covariance weighting approach improves model
performance, particularly when dealing with highly clustered datasets. Jemeljanova et al. (2024)
further emphasize that no standardized systematic methodology currently exists for addressing
spatial autocorrelation, implying that the selection of techniques must be tailored to the
characteristics of the data.
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Integration of Spatial Approaches, Macroeconomic Modeling, and Spatial-Temporal Modeling
in Carbon Tax Design

C. Kim et al. (2024) developed a Gaussian mixture model to design CO,-to-fuel supply chains by
incorporating geographical and social dimensions, demonstrating the potential for cost savings
through optimal facility placement. Similarly, Rahmati et al. (2023) applied k-means and self-
organizing maps within a hub location model that integrates multiple carbon policies, finding that
cap-and-trade outperforms other mechanisms in terms of economic efficiency for the
transportation sector.

Barrage (2019) linked carbon taxation to capital taxation within a Dynamic General Equilibrium
framework, showing that tax distortions reduce the optimal rate by 8-24% compared to the lump-
sum tax assumption. Y. T. Chan, (2020), employing a two-country E-DSGE model, highlighted that
economic conditions shape the responsiveness of optimal tax rates and that international
cooperation does not necessarily lower emission stocks. X. Chen et al. (2020) underscored the
importance of sector-specific tax differentiation and channel leadership in low-carbon supply
chains.

Gong et al. (2024) introduced a Dynamic Spatial-Temporal Graph Convolutional Recurrent
Network (DSTGCRN), which outperformed conventional emission prediction models by up to 40%
in terms of MAE. J. Wang & Zhuang, (2022) combined k-means clustering with BiLSTM and BiGRU for
carbon price forecasting in China, demonstrating superior performance compared to benchmark
models.

Economic Growth Dynamics, Environmental Tax Instruments, and Economic-Environmental
Performance Evaluation at Various Scales

W. Li et al. (2019) applied symbolic regression and the Apriori algorithm to cluster countries
based on emission-economic growth relationships, identifying two main clusters differentiated by
income levels and carbon intensity. Mardani et al. (2020) integrated self-organizing maps and
Artificial Neural Networks (ANN) to predict emissions from energy consumption and economic
growth in G20 countries, achieving high predictive accuracy.

Y. Li & Song (2021) compared the effectiveness of carbon and fuel taxes in China using a panel
spatial econometric model, showing that both instruments have distinct advantages, though their
effects depend on regional economic conditions. L. Li et al. (2021) evaluated the performance of
energy communities under a carbon tax scheme using a Nash bargaining mechanism, finding that
the distribution of emission responsibilities generates differentiated economic and environmental
outcomes.

Cao et al. (2025) combined Bayesian-optimized XGBoost with nighttime light (NTL) imagery to
estimate emissions in Shaanxi, China, identifying high-high clustering patterns in economically
advanced areas. G. Wang et al. (2021) employed NSGA-II to optimize low-carbon land use planning
in Eindhoven, revealing vegetation as the most influential geographic factor in emission reduction.

From the above review, it can be identified that prior studies have integrated machine learning,
spatial analysis, and economic modeling across various environmental policy contexts. However,
most of these studies have concentrated on a single domain, such as price or emission forecasting,
supply chain design, or economic growth analysis, thereby lacking a comprehensive integration of
economic and environmental variables for cross-country carbon tax design. This study addresses
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that gap by combining spatial clustering and machine learning to identify optimal jurisdictions for
carbon taxation policies based on economic-environmental performance.

RESEARCH METHOD

This study employs a quantitative approach with an exploratory-comparative design. The
primary objective is to identify the spatial patterns of countries’ economic-environmental
performance and to cluster them based on profile similarities using hierarchical clustering analysis.
This methodology is chosen for its ability to uncover latent structures within multidimensional data
encompassing both economic and environmental indicators (Gao, 2021; Korir, 2024; Kudal et al.,
2023). The use of Ward’s linkage in hierarchical clustering is justified by its superiority in minimizing
intra-cluster variance, thereby producing more homogeneous groups compared to other linkage
methods (Randriamihamison et al., 2020; Bu et al., 2020; Dogan & Birant, 2021).

The research sample consists of 38 countries with diverse levels of development, economic
structures, and environmental performance. Data were sourced from the World Bank, IEA, and
World Economic Forum (WEF). The variables used include Carbon Price, GDP, Carbon Emissions,
Energy Consumption, Industry (% of GDP), the Environmental Performance Index (EPI), and the
Climate Change Index. The stages of the hierarchical clustering analysis consist of six steps, as
illustrated in Figure 1.

Evaluate:
a. Geomap
b. Box Plot

Data Feature Hierarchical Silhouette
el ali Merging selection Clustering score

Figure 1 Stages in hierarchical clustering analysis
Source: Data compiled by researchers, 2025

The Hierarchical Agglomerative Clustering (HAC) method is employed to group countries based
on similarities in their economic-environmental profiles. Ward’s linkage is selected for its ability to
minimize within-cluster variance, thereby producing more homogeneous groups. The Ward’s
linkage formula is expressed as follows:

IC] + 4] IC| + |B] IC|
dcauvs)c = TdZAC + TdZBc ——d%p 1

Euclidean distance is employed to measure the proximity between objects. The formula for
Euclidean distance is expressed as follows:

n

d(x,y) = Z (x; —y)2 e 2

i=1
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The criteria for cluster separation are determined based on the silhouette coefficient and
dendrogram analysis, with the formula expressed as follows:
b(i) — ali
s(@) = @ _a(l)_ .......................... 3
max {a(i), b(i)}

The subsequent analysis includes the use of box plots to compare the distribution of variables
across clusters. Geo-mapping is employed to visualize the spatial distribution patterns of clusters
across countries, while inter-variable relationships are examined through a correlation matrix to
model the associations among carbon pricing, GDP, emissions, and the Environmental Performance
Index (EPI). Data processing was conducted using Orange Data Mining software version 3.39.0.

RESEARCH RESULTS

Data from 38 countries reveal significant heterogeneity in economic-environmental
performance, as illustrated in Figure 2. High-income countries with strong environmental
governance (e.g., Switzerland, Norway, Sweden, Denmark, and the Netherlands) tend to impose
relatively high carbon prices (90 USD per ton of CO,) and consistently achieve Environmental
Performance Index (EPI) scores at or near 100. This group also generally exhibits lower carbon
emission intensity relative to economic output, indicating the effectiveness of market-based
environmental policy instruments.
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Figure 2 Hierarchical Clusteringby R egion
Source: Orange Data Mining 3.39.0

In contrast, developing countries such as Indonesia, Kazakhstan, Ukraine, and Poland set
extremely low carbon prices (<1 USD per ton of CO,), despite the industrial sector contributing a
substantial share to GDP (=30%). This indicates limited fiscal and institutional capacity to
internalize the negative externalities of carbon emissions. These countries also record low
Environmental Performance Index (EPI) scores (<65), reflecting weak overall environmental
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performance. The hierarchical clustering method categorizes the countries into five main clusters,

as presented in Table 1.

Table 1 Cluster Division and Cluster Profiles

Cluster Categories Country Profile

C1 Industrialized Albania, Austria, China, Estonia, Medium-high GDP, strong
Countries with Finland, France, Germany, Japan, industry, relatively high
Low-Medium Latvia, Montenegro, Poland, emissions, carbon price <50
Carbon Prices Portugal, Slovenia, Spain, USD/ton

Ukraine, United Kingdom

C2 Emerging Argentina, Chile, Colombia, Carbon price 3-70 USD/ton,
Economies with European Union, Israel, Mexico, EPI moderate to high, but
Moderate Carbon  New Zealand, South Africa fiscal capacity still limited
Policies

C3 Middle-income Indonesia, Kazakhstan Carbon price <1 USD/ton,
countries with high emission intensity, low
very low carbon EPI, dominant industrial
prices sector

C4 Developed Denmark, Ireland, Netherlands, Carbon price >90 USD/ton,
Countries with Norway, Sweden, Switzerland, EPI close to 100, per capita
High Carbon Uruguay emissions relatively
Prices and controlled
Excellent EPI

C5 Developed Australia, Canada, Iceland, Very high GDP, massive

Countries with
High Economies
but Moderate
Carbon Prices

Luxembourg, Singapore

energy consumption, carbon
price of 18-66 USD/ton, but
still maintaining
environmental performance
through non-fiscal
regulations

Source: Data compiled by researchers, 2025

The model of relationships between carbon pricing, economic indicators, and environmental
indicators presented in Table 2 suggests several key findings. First, carbon pricing is positively
correlated with GDP per capita and the Environmental Performance Index (EPI). Wealthier countries

with greater fiscal capacity are more capable of setting higher carbon prices without imposing
substantial socio-economic burdens. Second, carbon pricing is negatively correlated with emission
intensity and per capita energy consumption. Countries with higher carbon prices generally

succeed in reducing emissions relative to economic output through renewable energy innovation,
industrial efficiency, and green tax incentives. Finally, the share of industry in GDP demonstrates

ambivalent effects. In countries with strong environmental governance (Cluster 4), even when the
industrial sector is large (>20% of GDP), emission levels remain low due to energy efficiency
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measures and the transition toward low-carbon technologies. Conversely, in countries with weaker
governance (Cluster 3), a large industrial sector contributes to high emission intensity as production
remains heavily reliant on fossil fuel-based technologies.

Table 2 Pearson Correlation of Research Variables

Carbon GDP Carbon Energy Industry  EPI Climate
Price emission  cons % PDB Change
Carbon Price  1.000
GDP 0.540 1.000
Carbon -0.102 0.371 1.000
emission
Energy cons  0.195 0.500 0.516 1.000
Industry % -0.160 -0.167 0.116 -0.102 1.000
PDB
EPI 0.331 0.404 0.208 0.279 -0.225 1.000
Climate 0.296 0.398 0.082 0.361 -0.394 0.071 1.000
Change

Source: Data compiled by researchers, 2025

The clustering results and relational model indicate that carbon tax design cannot be uniform
across countries. Advanced economies in Europe (C4) may serve as benchmarks for progressive
carbon pricing policies, whereas developing countries (C1 and C3) require a gradual approach that
integrates energy transition subsidies, green investment incentives, and institutional
strengthening. Accordingly, an effective carbon tax policy must be grounded in each country’s
specific economic-environmental profile rather than solely in global targets.

The quality of cluster separation, as illustrated by the silhouette plot in Figure 3, shows an
overall average value of approximately 0.20, which can be categorized as moderate. This indicates
thatthe separation between clustersis reasonably good, although not fully optimal. Cluster C1, with
a value of 0.128, demonstrates a positive yet relatively small result, suggesting a degree of
homogeneity but also some overlap with other clusters, particularly C2. In contrast, C2, with an
average value of 0.540, exhibits very strong separation and high internal consistency, reflecting a
uniform economic-environmental profile among the countries in this group. Similarly, Cluster C3,
with a score of 0.524, also indicates strong clustering performance despite consisting of only two
countries, namely Indonesia and Kazakhstan. This finding underscores that these two countries
share highly similar economic-environmental characteristics that are significantly distinct from
other clusters. Meanwhile, Cluster C4 records a value of 0.207, which falls within a moderate range,
signaling heterogeneity among advanced economies with high carbon prices. While similarities
exist within this cluster, variations in energy transition policies among its members contribute to its
moderate separation. Finally, Cluster C5, with a score of 0.145, reveals relatively weak clustering
strength. This suggests that although the countries in this group share common features as
advanced economies with moderate carbon prices, their proximity to Cluster C4 results in less
clearly defined boundaries.
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Figure 3 Silhouette Plot
Source: Orange Data Mining 3.39.0

The internal consistency of each cluster exhibits considerable variation. Cluster C1 shows low
consistency due to its high degree of heterogeneity, as this group combines advanced European
economies such as Germany and the United Kingdom with transition countries like Poland, Ukraine,
and Albania. This condition explains why the silhouette score of this cluster is relatively low. In
contrast, Cluster C2 demonstrates high consistency, where Latin American countries together with
Israel, the European Union, and New Zealand share carbon policy patterns characterized by
moderate pricing levels and relatively balanced fiscal capacities. Cluster C3 exhibits exceptionally
high consistency, as it consists of only two countries—Indonesia and Kazakhstan—that are strongly
aligned in their economic-environmental indicators, marked by low carbon prices, high emission
intensity, and low EPI scores. Meanwhile, Cluster C4 reflects moderate consistency, with Northern
European countries that consistently implement high carbon taxes and demonstrate superior
environmental performance, although differences in energy policy implementation prevent their
consistency score from reaching the levels observed in C2 or C3. Finally, Cluster C5 displays weak
consistency, as it comprises non-European advanced economies such as Canada, Australia, and
Singapore. Although these countries share high economic orientation with moderate carbon
regulation, differences in energy structures—such as Australia’s reliance on coal and Singapore’s
dependence on imported energy—reduce the level of homogeneity within this cluster.
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The implications of this clustering for carbon tax design highlight the necessity of tailoring
strategies to the specific characteristics of each country group. Cluster C1, which exhibits moderate
heterogeneity, requires differentiated policy approaches given the diverse fiscal and institutional
capacities within the group; Eastern European countries, for example, may require longer transition
phases compared to their Western European counterparts. In contrast, Cluster C2, characterized by
high internal consistency, represents an ideal candidate for regional policy harmonization, as the
similarity of economic-environmental profiles facilitates more uniform carbon pricing and supports
the adoption of a collective carbon tax framework. Cluster C3, despite its small size, displays very
high consistency yet reflects countries lagging behind in climate policy. These countries necessitate
international support in the form of energy transition financing and green technologies before they
can significantly increase their carbon prices. Meanwhile, Cluster C4 demonstrates a combination
of heterogeneity and strong policy orientation, enabling its member states to serve as global role
models. With robust fiscal capacities and strong environmental commitments, this cluster has the
potential to set global benchmarks for carbon pricing. Finally, Cluster C5, which exhibits weak
consistency, demands country-specific approaches due to the diverse energy contexts of its
members. Policy harmonization within this group is more difficult to achieve, making bilateral or
small-scale multilateral cooperation a more pragmatic strategy.

The box plot analysis reveals variations in the distribution of carbon prices, GDP, carbon
emissions, energy consumption, industrial structure, as well as environmental and climate
performance across clusters. For the carbon price variable, Cluster C4 exhibits a high median above
USD 100 with a narrow spread, indicating consistent policy implementation among advanced
European economies. In contrast, Cluster C5 shows a medium median ranging between USD 20 and
60 with wide variation, reflecting divergent strategies, such as those between Singapore and
Australia. Clusters C1 and C2 present low medians below USD 30 but with significant outliers,
suggesting heterogeneity in carbon fiscal policies. Meanwhile, Cluster C3 consistently remains at a
very low level, below USD 1, with a uniform distribution across countries.
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Figure 4 Box Plot per Carbon Price Variable
Source: Orange Data Mining 3.39.0
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The distribution of GDP further underscores differences in fiscal capacity. Clusters C4 and C5
consist of high-income countries with considerable variation, where Luxembourg and Switzerland
emerge as outliers. Clusters C1 and C2 fall within the middle range, driven primarily by contributions
from Eastern European and Latin American countries, while Cluster C3 occupies the lower-middle
category consistent with its fiscal capacity. In terms of carbon emissions, Cluster C5 exhibits high
per capita emissions due to intensive energy consumption, whereas Cluster C4 shows relatively low
emissions despite high GDP, indicating the effectiveness of carbon policy. Clusters C1, C2, and C3
demonstrate substantial variation, reflecting differences in energy and industrial structures.
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Figure 5 Box Plot per variable GDP and Carbon emission
Source: Orange Data Mining 3.39.0

Energy consumption is highest in Cluster C5, with a median exceeding 5,000 TOE per capita,
reflecting high energy intensity. Cluster C4 is at a moderate level consistent with energy efficiency,
whereas Cluster C3 records low consumption but remains fossil-fuel based, resulting in persistently
high emission intensity. In terms of industrial structure, Cluster C3 dominates with contributions
exceeding 35 percent of GDP, while Clusters C4 and C5 occupy intermediate levels supported by
efficient technologies. Clusters C1 and C2, meanwhile, display greater variability due to their
ongoing transition toward service-oriented and green sectors.
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Figure 6 Box Plot per variable Energy consumption and Industry % GDP
Source: Orange Data Mining 3.39.0

For the EPI variable, Clusters C4 and C5 dominate with scores above 90, while Cluster C1 records
relatively high but heterogeneous values. Cluster C2 falls within a moderate range of 60-80, and
Cluster C3 ranks the lowest with scores below 60. Regarding the climate change index, Cluster C4
demonstrates relatively strong performance with scores above 80, whereas Cluster C5 exhibits
greater variability. Clusters C1 and C2 are positioned at moderate levels, while Cluster C3 records
the lowest performance due to high vulnerability and weak adaptive capacity.
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Figure 7 Box Plot per EPI and Climate Change Variable
Source: Orange Data Mining 3.39.0

Based on these distributional results, the recommended range of optimal carbon prices is
formulated by considering the balance between economic capacity and environmental
performance. Cluster C1, consisting of mid-industrial economies with high heterogeneity, is advised
to adopt a transitional rate of USD 30-60 per ton of CO,, complemented by green technology
support. Cluster C2, comprising transition economies such as Latin America, Israel, and parts of the
European Union, is recommended to fall within the range of USD 20-50 per ton of CO,, with gradual
increases in line with strengthening fiscal capacity. Cluster C3, which includes lower-middle-income
countries with high emissions and institutional weaknesses, such as Indonesia and Kazakhstan, is
suggested to start below USD 15 per ton of CO,, supported by international assistance to avoid
excessive economic burdens. Cluster C4, consisting of advanced economies with high EPI scores
and already high carbon prices, is recommended to be within the range of USD 100-150 per ton of
CO,, consistent with net-zero targets and the Paris Agreement. Finally, Cluster C5, comprising
advanced economies with high energy consumption, is recommended to adopt a range of USD 50-
90 per ton of CO,, with a focus on energy decarbonization and improving industrial efficiency.
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Figure 8 Geo Map Visualization
Source: Orange Data Mining 3.39.0

The geo-mapped cluster-based analysis of carbon taxes presented in Figure 8 reveals a clear
spatial pattern in the distribution of economic-environmental performance across countries.
Cluster 1, illustrated in blue, is widely distributed across Eastern Europe, parts of Western Europe,
and East Asia. Countries within this cluster generally have medium to high GDP levels but continue
to face relatively high emission intensity. Cluster 2, depicted in red, is concentrated in Latin
America—including Argentina, Chile, Mexico, and Colombia—as well as Israel and South Africa. This
pattern underscores the characteristics of transition economies with limited fiscal capacity,
although they have begun to adopt carbon taxes at moderate rates. Meanwhile, Cluster 3, shown in
green, consists solely of Indonesia and Kazakhstan, two countries with similar profiles characterized
by heavy dependence on the industrial sector, very low carbon prices, and weak environmental
performance. Cluster 4, represented in orange, is concentrated in Western and Northern Europe,
including Sweden, Norway, Denmark, the Netherlands, and Switzerland. This concentration
highlights the dominance of Europe as the core region of countries with high carbon prices, strong
environmental governance, and robust economic capacity. Finally, Cluster 5, depicted in yellow,
encompasses non-European advanced economies such as Canada, Australia, Singapore, Iceland,
and Luxembourg. Countries in this cluster exhibit high income and massive energy consumption
but have yet to establish carbon prices as high as their European counterparts.

From a regional and geo-economic perspective, a clear fragmentation can be observed in
Europe. Countries such as Germany, France, and Austria fall into Cluster 1, whereas Sweden,
Norway, and the Netherlands are classified under Cluster 4. This highlights differences in the depth
of carbon fiscal policies despite their shared membership in the European Union. Latin America is
predominantly represented by Cluster 2, consistent with its middle-income economic capacity and
reliance on fossil energy. Asia displays wide disparities, with Japan and China belonging to Cluster
1,Israeland parts of the Asia-Pacificincluded in Cluster 2, and Indonesia placed in Cluster 3. Oceania
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and North America exhibit the pattern of advanced energy-intensive economies, as reflected in
Australia and Canada, which are grouped in Cluster 5. Africa is represented by South Africa, which
falls into Cluster 2, underscoring its status as a transition economy facing significant
decarbonization challenges.

In terms of policy implications, countries in Cluster 4 can serve as global role models,
maintaining high carbon price ranges of approximately USD 100-150 per ton of CO,. Cluster 5
countries, such as Canada, Australia, and Singapore, should raise their carbon prices to the range of
USD 50-90 per ton of CO, to close the gap with Europe, particularly in the energy sector. Cluster 2,
comprising Latin America and South Africa, requires a gradual approach with carbon prices ranging
between USD 20-50 per ton of CO,, alongside efforts to strengthen fiscal and institutional
capacities. Cluster 1, covering Central-Eastern Europe and East Asia, may adopt transitional carbon
pricing of USD 30-60 per ton of CO,, supported by green technology to safeguard industrial
competitiveness. Meanwhile, Cluster 3, consisting of Indonesia and Kazakhstan, requires low initial
carbon tax schemes below USD 15 per ton of CO,, combined with international support in the form
of energy transition financing and emissions trading mechanisms.

DISCUSSION

Carbon tax as a fiscal instrument is rooted in Pigouvian Tax theory (Pigou, 1920), which
emphasizes the importance of internalizing the negative externalities of greenhouse gas emissions
through a carbon price that reflects the marginal social cost. In this context, the findings reveal
pronounced spatial differentiation across countries in determining carbon prices. For instance,
countriesin Cluster 4 (Sweden, Norway, Denmark, the Netherlands, Switzerland) have adopted high
carbon prices (100-150 USD/ton CO,), consistent with their strong economic capacity and high
environmental performance. This affirms that the implementation of carbon taxation cannot be
standardized globally but must instead be tailored to the economic structure, fiscal capacity, and
environmental performance of each jurisdiction.

From a spatial autocorrelation perspective (Tobler, 1970; Anselin, 1988), the results
demonstrate consistent spatial patterns: Europe dominates the cluster of countries with high
carbon taxes, while Latin America and Africa are concentrated in clusters with moderate rates, and
Asia (e.g., Indonesia, Kazakhstan) emerges as an outlier with extremely low carbon prices. This
supports the thesis that carbon tax policy is not merely fiscal-economic in nature but also geo-
economic, with spatial distributions that carry significant implications for the equity of the global
energy transition.

The integration of machine learning and spatial clustering in this study advances the literature
(J.Wang & Zhuang, 2022; Jemeljanova et al., 2024) by introducing a non-linear analytical framework
capable of identifying multivariate economic-environmental patterns. Accordingly, this research
contributes theoretically by proposing a hybrid approach that bridges Pigouvian Tax theory, spatial
econometrics, and data-driven ML, thereby enabling a more adaptive design of carbon tax policies.

Previous studies have exhibited notable limitations. Misiuk & Brown, (2023) highlight the
challenge of spatial autocorrelation, which is often overlooked in ML-based modeling, whereas
Barrage, (2019) and Y. T. Chan, (2020) focus primarily on macroeconomic frameworks without
adequately accounting for spatial heterogeneity. This study addresses these gaps by integrating
spatial clustering across 38 countries, thereby capturing the complexity of interactions among
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carbon pricing, GDP, carbon emissions, energy consumption, industrial structure, EPI, and climate
change indices.

In addition, prior studies such as Rahmati et al. (2023) and C. Kim et al. (2024) have primarily
emphasized carbon supply chain optimization, whereas this research extends the scope by
determining the optimal carbon price range across country clusters. The practical contribution of
this study lies in providing differentiated policy recommendations tailored to the economic-
environmental profiles of each cluster. Middle-income industrial countries in Cluster 1 are advised
to implement a phased carbon tax of USD 30-60 per ton of CO,, supported by green technology
adoption. Cluster 2, comprising transition economies such as Latin America and South Africa, is
more suited to a moderate range of USD 20-50 per ton of CO, while simultaneously strengthening
institutional capacity. Cluster 3, which includes Indonesia and Kazakhstan, requires a relatively low
rate below USD 15 per ton of CO,, contingent upon international support. Advanced European
economies in Cluster 4 are recommended to adopt a higher rate of USD 100-150 per ton of CO,,
whereas Cluster 5 is projected to align with a range of USD 50-90 per ton of CO,, with a strong
emphasis on energy decarbonization.

Table 3 Research Results Clusters, Economic-environmental Characteristics, Carbon Price
Range Recommendations, and Policy Implications

Cluster Economic- Optimal Carbon Policy Implications
environmental Tax Range
Characteristics (UsSD/ton CO,)

C1 High-middle GDP, 30-60 A gradual transition is needed;
moderate emissions, focus on energy efficiency, green
large industrial structure, technology, and regional policy
relatively high EPI harmonization

C2 Transitional countries, 20-50 Apply moderate tariffs;
limited fiscal capacity, institutional strengthening and
moderate energy international funding support are
consumption, varying EPI needed

C3 Low-medium GDP, high <15 Low tax rates; need for energy
carbon intensity, fossil transition subsidies, international
fuel-based energy assistance, and emissions trading
consumption, low EPI mechanisms

Cc4 Developed country, high 100 - 150 Become a global role model;
GDP, excellent EPI, low promote climate leadership,
emissions, efficient harmonization of high tariffs in the
energy consumption European region

C5 High GDP, massive 50-90 Gradually increase carbon tariffs;
energy consumption, prioritize energy decarbonization,
good EPI, but high energy technological innovation, and
intensity industrial compensation

Source: Data compiled by researchers, 2025
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Table 3 demonstrates that countriesin cluster C1, encompassing major industriesin Europe and
East Asia, are currently in a transitional phase; therefore, a moderate carbon tax rate is considered
sufficient to maintain competitiveness while simultaneously promoting energy efficiency. Cluster
C2, which consists of transitional economies in Latin America and Africa, requires more extensive
fiscal adaptation, implying that moderate tax rates must be accompanied by institutional
strengthening and international financial support. Meanwhile, Indonesia and Kazakhstan,
categorized within cluster C3, emerge as critical outliers that necessitate a low carbon tax scheme
with international assistance in order to avoid impeding economic growth. Northern and Western
European countries in cluster C4 have successfully implemented high carbon taxes and are well-
positioned to serve as global pioneers in advocating for the establishment of an international
minimum tax rate. Finally, cluster C5, comprising advanced non-European economies, requires a
gradualtaxincrease toward European levels in order to sustain the credibility of their global climate
leadership.

Furthermore, the spatial heterogeneity of carbon pricing identified in this study resonates with
the principle of Common but Differentiated Responsibilities and Respective Capabilities (CBDR-RC)
under the UNFCCC framework. Advanced economies in Cluster 4 exhibit greater fiscal capacity,
technological readiness, and historical emissions responsibility, thereby justifying their higher
recommended carbon tax levels. Conversely, countries in Cluster 3, such as Indonesia and
Kazakhstan, possess limited institutional and financial capability, indicating the need for lower
carbon tax regimes supported by international assistance mechanisms. The clustering evidence
thus reinforces that carbon taxation must incorporate differentiated economic burdens to ensure
fairness, prevent development setbacks, and promote equitable transitions. Integrating CBDR-RC
perspectives strengthens the global legitimacy of carbon pricing policies and aligns national actions
with principles of distributive climate justice.

The findings of this study carry dual implications. From a practical perspective, the clustering
results provide governments with a basis for formulating context-specific carbon tax policies that
align with fiscal-economic capacity and environmental performance. For instance, countries in the
low cluster (C3) require lower tax rates accompanied by international support, whereas those in the
high cluster (C4) are expected to reinforce global leadership through more aggressive rates. From a
theoretical standpoint, this study enriches the literature by introducing a framework for spatially
informed carbon tax policy design, which has not been explicitly integrated into prior research.

CONCLUSION

The findings of this study underscore that carbon tax policies cannot be designed through a
uniform approach but must instead account for the spatial heterogeneity of economic-
environmental performance across jurisdictions. By employing hierarchical clustering with a Ward
linkage method, 38 countries were classified into five distinct groups with clear characteristics.
Western European and Scandinavian countries (Cluster 4), characterized by high economic
capacity, strong environmental performance, and the adoption of aggressive carbon pricing, are
recommended to implement a tax of USD 100-150 per ton of CO, in order to sustain their global
leadership in climate mitigation. In contrast, transitional economies in Latin America and Africa
(Cluster 2) are better suited to a moderate tax range of USD 20-50 per ton of CO,, accompanied by
institutional strengthening and international financial support. Middle and lower income countries
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such as Indonesia and Kazakhstan (Cluster 3) are realistically positioned to begin with a low tax of
less than USD 15 per ton of CO, to avoid constraining growth, while still being directed toward a
sustainable energy transition. The practicalimplication of these findings is the necessity of adopting
differentiated policies based on fiscal capacity and environmental performance, complemented by
global redistribution mechanisms, technology transfer, and international cooperation frameworks
to ensure a just climate transition.

From a theoretical perspective, this study enriches the literature by integrating three
foundational pillars: Pigouvian Tax theory as the fiscal basis, spatial autocorrelation as the spatial
framework, and machine learning as a data-driven analytical tool. The primary contribution lies in
the development of a spatially informed carbon tax policy design framework, which has been
scarcely explored in prior research. By linking spatial analysis, economic-environmental indicators,
and the determination of optimal carbon tax ranges, this study offers a novel conceptual model for
designing adaptive and context-specific climate policies. Future research directions may focus on
expanding the temporal dimension (spatio-temporal modeling) to capture the dynamics of
emission changes and carbon prices over time, as well as integrating with dynamic macroeconomic
models to evaluate fiscal distributional impacts and intergenerational equity. Furthermore,
sectoral-level exploration (energy, industry, and transportation) is equally crucial to ensure greater
precision and effectiveness of carbon tax policies. Thus, this study not only provides practical
contributions to policy formulation but also opens avenues for more integrative theoretical
advancements in the fields of environmental economics, taxation, and data science.
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